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We review some known results on the nature of the tree of states in spin glasses 
and we present new results on its topology. We pay particular attention to the 
so-called cont inuum limit in which the levels are labeled by a continuous 
variable x. We also study the dependence on the level x of the type of branching 
(bifurcation, trifurcation,...). We show that the statistics of the tree is universal 
in the cont inuum limit, i.e., it does not depend on the details of the algorithm 
used to generate the tree. 
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1. I N T R O D U C T I O N  

Mean field theory of spin glasses predicts the existence of an infinite 
number of pure states. Each state carries a weight w~, where ~ labels the 
state. For each pair ~, fl of states we can define a distance d~,~. It satisfies 
the ultrametricity inequality 

d~,/~<max(d=,~, dT,~) V? (1.1) 

This inequality implies that we can associate to each set of states and 
distances a branching tree, such that the leaves of the tree are the states. 
Each node of the tree is characterized by a level, and the distance of two 
states ~ and fl is the height of the highest node we encounter going from 

to ft. The set of pure states will be therefore characterized by the w's and 
the d's or equivalently by the w's, by the topology of the tree, and by the 
levels of the nodes. 
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In the mean field theory of spin glasses there is a probability law 
defined on trees, i.e., each tree (i.e., each set of w's and d's) may appear 
with a probability assigned by the theory. This probability is defined in a 
constructive way, i.e., one defines a process to construct it. 

In the simplest case one introduces only a finite number of levels. 
One starts from the highest levels, by associating a weight to each node 
connected to the root; at the next step the descendants of the node are 
introduced and an extra weight (by following a specific rule) is assigned to 
the each of the descendants. The process is iterated once for each level 
we want to build. In most physical applications we have to consider the 
so-called continuum limit where the number of the levels goes to infinity. 
This limit is rather tricky and there are only a few descriptions of the 
resulting tree (including one remarkable paper of Ruelle~17)). 

The aim of this paper is to present further investigations on the nature 
of such a tree which plays a crucial role in the mean field approach to spin 
glasses. In particular, we will discuss in detail the continuum limit and the 
topology of the tree. This detailed analysis may be interesting to mathe- 
maticians also because this infinite tree has remarkable properties from the 
probabilistic point of view. We will not be concerned with justifying the 
correctness of this approach for spin glasses: here we are only interested in 
describing the resulting theory. 

After this introduction, in Section 2 we define equilibrium states (or 
phases). In Section 3 we present some simple results on the equilibrium 
states of spin glasses; we introduce ultrametricity and we construct the tree 
of states. In Section 4 we present some of the known results on the correla- 
tions among the distances of the states and their weights. In Section 5 we 
start to study the continuum limit, while in the following section we 
analyze the behavior at small x. Finally, in the last section we show how 
to perform numerical simulations of the tree and under which conditions 
the resulting probability distribution over the trees is universal in the 
continuum limit. 

2. G E N E R A L  C O N S I D E R A T I O N  ON T H E  E Q U I L I B R I U M  S T A T E S  

In this section and in the next one we will present some simple results 
that have been obtained for the equilibrium states of the infinite-range spin 
glasses at low temperatures. ~9'u'12) These results concern the structure of 
configurations which have a nonnegligible probability in the low-tem- 
perature region. We do not need to specify in detail the Hamiltonian of the 
system. 

The system contains N spins ai, which may take only the two values 
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- 1 or + 1. Given two configurations a and z, we can define their distance 
as the percentage of the sites where the two configurations differ, i.e., 

d = 1/(4N) ~ ( a i - r i )  2 (2.1) 
i = I , N  

Such a distance belongs to the interval (0, 1), and it is zero only if the 
two configurations are equal. An interesting situation corresponds to the 
limit where the number N of sites goes to infinity. In this case two 
configurations may stay at a zero distance, if the number of differences 
remains finite when the total number N goes to infinity. The percentage of 
ditfferent or's, not the absolute number, is relevant in this definition of the 
ditstance. 

At a given temperature, the number of relevant configurations is 
extremely large when the number of variables N goes to infinity [it is 
proportional to exp(NS), S being the entropy density]. It is usual to 
assume that the set of configurations may be partitioned into subsets, 
called states. 

States (or phases) are defined as follows. 

(a) Each of the states contains an exponentially large number of 
configurations when N goes to infinity. 

(b) More crucially, if we take  two different generic configurations 
belonging to states A and B, respectively, their distance does not depend 
on the configurations, but only on the choice of A and B. 

(c) It should also be true that the distance between two configura- 
tions of the same state should be strictly smaller than the distance between 
two configurations of different states. This last property may be written as 

dA.A < dA,~ (2.2) 

where dA, B is the distance between states A and B, i.e., the distance between 
two generic representatives of states A and B. 

(d) The classification into states is the finest one which satisfies 
properties (a), (b), and (c). 

The classification into states will depend on the temperature of the 
physical system. In many cases it can be rigorously proven that the 
classification into states is possible and unique. States are often called 
phases in the physical literature. It may be interesting to note that the 
definition of state may look very similar to the definition of species which 
is familiar to biologists. 
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The perplexed reader may find more useful an alternative definition of 
state. We consider a generic quantity A and we study its fluctuations 

(A 2) - ( A )  2 =  ((A - ( A ) )  2 ) (2.3) 

(we indicate the expectation value of a quantity A by (A)) .  
Intensive quantities may be defined as 

1IN • (Ai(~i))  (2.4) 
i= l , N  

where the functions Ai depend only on the value of ai (they may depend 
on the site i). 

The crucial question is, do intensive quantities fluctuate? Intuitively, we 
would like a negative answer, since intensive quantities are averages over 
the whole system. But, for example, this is not the case at a first-order 
transition point, where different phases coexist. 

In a ferromagnet at low temperature the most likely configurations 
contain most of the spins up or down. In this case it is possible to classify 
configurations according to the direction into which the majority of spins 
points and to define an average restricted only to this kind of configura- 
tion. If we define these restricted averages, the percentage of spins directed 
in one direction does not fluctuate. 

More precisely, if 

(~ i )  = Z ~ , e x p ( - / ~ H ) / Z  exp( - f lH)  (2.5) 
{~} / {~ }  

and H is symmetric under the global transformation a --, - a ,  we have that 

( ~ )  = 0  (2.6) 

In this situation intensive quantities do fluctuate. Indeed, if we call _r 
the intensive quantity corresponding to the spins (i.e., S = 1/NZ~= 1,u Cry), 
the expectation value of S is zero ( ( S ) = 0 ) ,  while the expectation value 
of its square is nonzero ( ( S ) 2 = 0 ) .  

By classifying the configurations in two sets, we can define restricted 
averages ( . ) +  and ( - )  such that 

�89189 = ( A ) ,  Q r ) + = m ,  (or) = - - m  (2.7) 

In normal ferromagnetic systems it is possible to prove that intensive 
quantities do not fluctuate in ( . ) +  and in ( - ) .  This decomposition of 
a probability distribution in which intensive quantities fluctuate into the 
linear combination of restricted probability distributions in which the 
intensive quantities do not fluctuate can be done in many cases in statisti- 
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cal mechanics. These restricted probability distributions correspond to 
different states and the states will be identified by the expectation value of 
intensive quantities. 

Generally speaking, we can thus write the decomposition in states as 

~A)=~ w~a)~ (2.8) 

where c~ labels the species and w~ is the probability that a configuration 
belongs to the state c~. 

Although this decomposition into states can be done only in the 
infinite-volume limit, it may be useful to extend it to a finite (but large) 
system. In this case there will be some configurations (with very small 
probability, e.g., configurations with domains wall among positive and 
negative magnetization) which could not be classified into states. 

Normally the classification into phases is quite poor. For usual 
materials, in the generic case there is only one phase and the classification 
is not very interesting. In slightly more interesting cases there may be two 
states: for example, if we consider the configurations of a large number of 
water molecules at 0~ we could classify them as water or ice: there are 
two states. In slightly more complex cases, if we choose carefully external 
parameters like the pressure or magnetic field we may have the coexistence 
of three or more phases (tricritical or multicritical points). 

In all these cases the classification is rather simple and the number of 
states is quite small. It was really a surprise when it was discovered that in 
the infinite-range spin-glass model the number of states is very large: it 
goes to infinity with N (the number of spin variables) and a very interesting 
nested classification of states is possible. This behavior implies that the 
Gibbs rule is not valid for spin glasses. Indeed, the Gibbs rule states that 
in order to have the coexistence of n phases (n-critical point), we must tune 
n parameters. Here no parameter is tuned and the number of coexisting 
phases is infinite! 

In the next section we examine the properties of the w's and d's in the 
mean field approach to spin glasses. 

3. S O M E  R E S U L T S  O N  S P I N  G L A S S E S  

We now describe tlie results obtained in the study of spin glasses 
(which depend on the detailed model). We restrict our analysis to the 
infinite-range spin glass. As we have seen, it is convenient to introduce the 
distance d of two states: 

d~7==l/(4N ) ~ (~ri-~i) 2 (3.1) 
i =  I ,N  
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where r and a are two generic configurations belonging to states e and 7, 
respectively. The distance d is the usual Hamming distance between the 
two configurations. Other definitions of distance, are possible, e.g., d ~ -  
1/NZi=l, lv  ~ �9 2 o (E i - E i )  , where Ei is the energy density of the ~ configura- 
tion at site i, but no new information is carried by this distance (at least 
if we neglect the possibility of global sign reversal). In the mean field 
approach d E is a function of d. 

In spin glasses states do not have microscopically different properties 
and 

d~,~=d,,~ = D  s (3.2) 

The quantity D s is related to the usual order parameter qeA by 

Ds = (1 - qeA)/2 (3.3) 

Indeed, introducing the state-dependent magnetization (m~-= (o-~)~), 
one finds that 

d~7= 1/(4N) ~ ( m ~ - m ~ ) 2 + D s  (3.4) 
i = I , N  

and the order parameter qEA is equal to Zi= 1 , N  ( r o T )  2 (it does not depend 
on the choice of the state ~). Sometimes a slightly different definition of 
distance is used (i.e., d~ = d ~ -  Ds) in such a way that d~ = 0. 

In the mean field approach to spin glasses the w's are random (not 
independent) variables. (9'131 In the following we will introduce the 
probability law which generates them. 

First of all there is some kind of democracy between states in the sense 
that states may differ only in the number configurations which they contain 
and in the distances from the other states. There is no intrinsic difference, 
e.g., we have seen the variability inside states labeled by c~ (i.e., d J  does 
not depend on ~: we have called it Ds. 

Most interestingly, an explicit computation based on the replica- 
symmetry-breaking approach shows that the distance among states satisfies 
the ultrametricity inequality (1.1), (5'9'14) and consequently states may be 
classified in a taxonomic way. (16) Since natural taxonomy is familiar, it will 
be convenient to use in this section a biological terminology, and use the 
word species instead of state. If we want to recover the usual terminology, 
we should read clusters, superclusters, and supersuperclusters in place of 
genera, families, and orders. 

For example, one may take a distance DG, with DG > Ds, and intro- 
duce genera ~,/~, 7,,.., in such a way that all species belonging to the Same 
genus are separated by distances less than or equal to DG, while species 



Tree of States in Spin Glasses 863 

belonging to different genera have a distance greater than DG. The value 
of Dc is arbitrary; however, if Dc is very close to Ds, the genera will be 
quite similar to species and they will contain only a few species, while if Dc 
is much greater than D s, the genera classification will be very coarse. It is 
remarkable, however, that, independent of the value of Da,  the number of 
species in any genus is infinite (it goes to infinity with N, the number of 
variables). 

In the same way one can introduce families by choosing a distance 
1)F>Da and by grouping together families at distances smaller than or 
equal to DF. Families are similar to genera (they provide a coarser 
classification). In particular, each family contains a very large number of 
genera. 

It should be evident to the reader that, if we are not satisfied with the 
classification into species, genera, and families, we can introduce orders by 
choosing a distance Do > DF and by grouping together genera at distances 
smaller than or equal to Do. Orders, too, contain a very large number of 
families. 

We could go on for a while by introducing more levels of classifica- 
tion. Let us stop here and try to clarify some key points. The number of 
levels and the distances at which levels are defined (DG, DF, Do, and so 
on) are obviously arbitrary: we could also introduce a classification which 
is coarser than genera, but finer than families. 

Many more results are known if we take into account the number of 
configurations inside each given species. Let us call wA the probability that 
a generic configuration belongs to the species A; the sum over all the 
species of wA gives obviously one; WA is the population in species A, 
diLvided by the total population. 

If one counts the number of species with WA > p, which we call Ns(p), 
one finds that for small p it goes like 

Ns(p),-~ p xs (3.5) 

where x s is a given number, which characterizes the tree. A power law 
distribution of frequencies is a quite common phenomenon in nature and 
it is gratifying that we have found that it appears in this more abstract 
setting. 

In a similar way, 

NG(p) ~ p-X~ 

NF(p) ~ p-X~ 

No(p) ~ p-X~ 

(3.6) 
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where NG(p) is the number of genera having a percentage of population 
greater than p, the population of a genus being defined as the sum of the 
populations of the species that belong to that genus. NF(p) and No(p) are 
defined in an analogous way. 

Mathematical consistency requires 

X s ~ X G ~ X F ~ X  0 (3.7) 

The situation may be similar to the one described in Fig. 1, where we 
represent the classification into species, genera, and families as a tree. 

In Fig. 1 the leaves of the tree are the species and the distance between 
different species is represented by the level we have to reach to find a path 
joining the two species. If the quantities DG and O F a r e  the ones repre- 
sented by the two thin horizontal lines, the classification into genera and 
families is represented by the wide horizontal lines below the tree. The 42 
species are thus classified into 15 genera and 7 families. It is evident that 
the levels which we have chosen to define genera and families are arbitrary. 

The tree of species in spin glasses is much more dense and branched 
than the one of Fig. 1; it is indeed an infinitely branched tree. Branches are 
present at any level and there is an infinite number of branches in any 
interval of distance. The very mathematical existence of such an object is 
far from being trivial and it has been proved only recently by Ruelle. (1~) 

The full characterization of such a tree is given by a function x(D) 
such that 

XG=X(DG) (3.8) 

This function tells us how the exponent x changes when one changes 
the definition of genera (the same function plays the equivalent role for 
families and orders). 

d G 

0 8 
_ _  

Fig. 1. An example of a tree, with the associated classification. 
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Different trees have different functions x(D), as they depend on the 
precise nature of the Hamiltonian. In simple cases x(D) can be computed: 
for example, this has been done in the infinite-range spin-glass model (9) and 
it has been found that x(d) depends on the temperature. 

This infinitely branched tree, in spite of its apparent complications, is 
the simplest mathematical structure for an infinitely branched classification 
and it is rather likely to be relevant [with different forms of the function 
x(D)] in many physical and possibly biological problems. 

4. M O R E  I N F O R M A T I O N  ON THE TREE 

In this section we provide some explicit formulas describing the 
distribution of the weights. Starting from them, the formulas of the 
previous section were derived. First we introduce some variables f~ for each 
species ~, which we may call the free energy of the species e. The w's can 
be computed from the f ' s  as follows: 

w~=exp(--f~)/~ exp(--f~) (4.1) 

It is evident that if we shift all the f ' s  by the same amount, the w's are 
let't invariant. 

In the mean field approach to spin glasses the f ' s  are independent 
random variables and the probability of finding a state with a free energy 
in the interval f, f + df is given by 

dP = exp[xs(f  - f )  ] df (4.2) 

Equation (4.2) gives the probability distribution of the frequency of 
species and is essentially equivalent to Eq. (3.5). 

We must now state the probability distribution of the d's and the 
correlations between the d's and the w's. Moreover, we would like to know 
if the species can be classified in some useful manner. It turns out that the 
following inequality is satisfied: 

d~,~<max(d~,~, d~,~) Vfl (4.3) 

Condition (4.3) tells us that the space of species is ultrametric; it 
amounts to saying that, for any choice of the number D, species may 
be classified into nonoverlapping clusters (of diameter D) such that 
and 7 belong to the same cluster if and only if d~ ~< D. Clusters may be 
decomposed into subclusters of smaller diameter and so on. The whole 
distribution of states is characterized if we specify the clusters and their 
owerlaps. 
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Ultrametricity is the crucial property that allows a taxonomic 
classification. A space is ultrametric if two spheres of the same diameter 
coincide if they have at least one point in common: if 0( belongs to the same 
family as/~ (d~,~ < DF) and /~ belongs to the same family as ~ (d~.~ < OF) , 
then 0( belongs to the same family as 7 (d~,~ < OF). 

The description of the combined probability distribution of distances 
and frequencies can be obtained first in the simplest case where we suppose 
that the distances may assume a finite number of values, which we indicate 
by dj, j = O, 1,..., k (for simplicity we suppose that the d's are an increasing 
sequence). We will write down the formulas for k = 3; the generalization to 
arbitrary k is evident. At the end we will perform the limit k--+ o% where 
the distance will take a continuous range of values. 

If k = 3, the distance among an arbitrary pair of species is at maximum 
Dr; states at a smaller distance belong to the same family: if the distance 
is De (not DF) , they belong to the same genus; their distance may be equal 
to D s  = 0 only if they coincide. 

We now describe the frequency distribution of species and of genera 
inside the families and of the species inside the genera: the rules are so 
simple that they can be easily generalized to an infinite hierarchy. 

The number of families diverges with N: we label them with an index 
0(3 and we associate to each of them a f ree  energy f~3" The f ' s  are random 
independent variables, whose probability distribution is 

exp[Xr ( f~3- - f ) ]  df~ (4.4) 

In each of the families there are infinitely many genera of diameter DG; 
we label them with a pair of indices 0(3, {z2 and we associate to each of them 
a "free energy" f~,~2: the f ' s  are random independent variables, whose 
probability distribution is 

exp[xG(L3.~2-L3)]  df~3,~2 (4.5) 

The parameter xc  satisfies x~ < x F. 
Finally the states are labeled with three indices (0(3, 0(2, 0(1) and the 

probability distribution of the associated free energies (which are once 
again random independent variables) is 

(4.6) 

where Xs < XF < XG. Integrating over the free energies of the families and of 
the genera, one finds that the probability distribution of the free energies 
of the states is given by Eq. (4.2). 

It can be proved that these last equations imply Eq. (3.6). 
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This construction may be generalized to any value of k. In this way we 
obtain a distribution of the probability of the states and of their distances, 
the only parameters being the D's and the x's. We finally send k to infinity 
in such a way that the D's become dense in the interval Ds, DM. In this 
way we obtain a monotonically decreasing function x[D], which is defined 
in the interval Ds-DM: the distribution of phases and of their distances 
depends only on this function x[D]. 

It is not evident whether this construction survives in the limit k going 
to infinity, where an infinite number of levels is present. Fortunately, a 
detailed analysis by Ruelle shows that this construction really defines an 
infinitely branched tree. In the next section we will discuss in greater detail 
the properties of this infinitely branched tree. 

Before starting this task, we remark that the notations we have used 
up to now are slightly different from the usual one to which we will shift 
in the next section. 

We first introduce a factor fl in the free energy [w oc e x p ( - f l f ) ] .  
Equation (4.2) is not changed, but the new value of Xs is obtained by 
dividing the old value by a factor ft. 

Instead of the function x(d), we will consider its inverse d(x) [x being 
a variable defined in the interval (0, 1 )], so that we will identify the clusters 
not by their distance, but by the corresponding value of x. We notice that 
changing the function d(x) is just a redefinition of the distance, so that the 
specific form of the function d(x) is essentially irrelevant for all the proper- 
ties of the tree. Without loss of generality we can assume that the root of 
the tree is located at x = 0 and the states at x = 1. If the true value of Xs 
(which is usually called XM) is smaller than 1 [-i.e., x(d)<<,Xs] and the 
states are located at x = Xs, the function d(x) will be flat (i.e., equal to Ds) 
for xM<x< 1. 

5. H O W  TO DEAL W I T H  I N F I N I T E L Y  B R A N C H E D  TREES 

The limits in which the number of levels goes to infinity seem rather 
complex and very difficult to control analytically. However, the number of 
states with w > p increases as p xM. If we observe the system with resolu- 
tion e, in the sense that we neglect states whose weight is less than e, the 
total number  of observed states increases as a power of e, while the total 
weight of these states is very close to 1 when e goes to zero, i.e., it behaves 
as ] - const • e r -xM) 

After the introduction of the resolution e, the tree acquires only a finite 
number  of branches. We can ask now more precise questions about  the 
probabili ty of having a branching of order k (k = 1 is no branching, k = 2 
is a bifurcation,...). It clear that these probabilities are e dependent and 
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have a singular limit when e goes to zero. This problem of dealing with the 
limit e going to zero, where an infinite number of states is present, has 
(quite amusingly) many technical points in common with the resummation 
of infrared singularities in quantum electrodynamics and in QCD. 

A certain number of quantities may be computed by analytic methods, 
although in certain cases the computations may be very involved. 

The formalism of the previous section is good enough for doing many 
computations, but it is not the most appropriate for many purposes. The 
main drawback is that the reference free energy of a cluster is not related 
in a deterministic way to the weight of a cluster, which is defined as the 
sum of the weights of all the states belonging to that cluster. Indeed, 
clusters which have the same reference free energy will have different total 
weight. Moreover, if we change the value of xM by an infinitesimal amount, 
the weight of the clusters changes by a finite amount. 

It turns out that there is an alternative procedure to construct the tree 
in which the weight at each level is fixed by construction at the inter- 
mediate stages and not computed at the end. 

The first step consists in defining the free energy of the clusters as in 
the previous case; the difference with the previous approach is that the 
weights of the clusters are computed at the beginning: wc oc exp(-f l fe) .  
(We recall that the weight of a cluster is the sum of the weight of all the 
states which belong to that cluster.) 

We now suppose that the value of x corresponding to the clusters is 
c and that the level of the are subclusters s, with c < s as usual. We want 
to compute the probability distribution of the weights of the subclusters. 
To this end one introduces M variables f~, for i =  1, M. These f ' s  are 
not uncorrelated as in the previous case and their conjoint probability 
distribution is proportional to 

exp 'q c 

If we set c = 0, we recover an independent distribution. The weights of 
the subclusters are given by 

t 1 M  ' =  , 

The f,. have the physical meaning of the free energy of the subclusters 
at fixed value of the free energy of the cluster. 

It can be seen that the denominator in Eq. (5.1) is essential to recover- 
ing an independent distribution of the f ' s  at level s, as far as it cancels the 
effect of the correlation of the weights at level c. 
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It is a rather surprising fact that the two methods give exactly the 
same probability distribution, as can be verified by explicit and long 
computations. The first and second methods were introduced in refs. 8 
and 7, respectively. The first method is simpler from an abstract point of 
view, while the second one has the advantage that the weight of the clusters 
we introduce is the sum of the weights of the states belonging to the cluster, 
not a reference value for extracting the weights of the states. The second 
method is much more appropriate if we introduce a cutoff in the weights 
of the states, because this induces a cutoff in the weights of the clusters. 
Indeed, in the second method it is possible to neglect clusters with a small 
weight, because all the states inside this cluster must have a small weight 
(less than that of the cluster). In the first method it is not legal to keep at 
an intermediate step only a fixed number of clusters (i.e., those with 
smallest free energy) when we go to the continuum limit, because in the 
generic case the states which have the largest weight do not belong to the 
clusters with lowest free energy. 

Equation (5.2) can be derived from the following equations for the 
probability distribution of the w's. Indeed, the probability distributions of 
a finite number of w's have a simple form. An explicit computation using 
the replica method shows that the probability for finding k subclusters 
( i=  1, k) inside the cluster with weight w i is given by 

s (k-  1)/'(1 - c) F ( k  - c / s ) / [F(1  - c) ~ F ( k s  - c) F(1 - c/s)] 

x [-I w r 7 1 - s ( 1 - w r r )  - l + k s - c  (5.3) 
i ~  1,k 

where the wr's are the weights of the subclusters normalized to the cluster 
( w r i =  ws/wc) and wr r is given by ~2r wri. Of course the probability 
vanishes in the region where w r r  is greater than 1. Indeed, Eqs. (5.1) and 
(5.2) were proved starting from (5.3). 

If we set c = 0, we obtain the probability of finding k states ( i=  1, k) 
with weight wi: 

[ s(k 1)/F(ks)]  ~I  w , ~ - s ( 1 - w r ) l + k ,  (5.4) 
i ~  l , k  

It may be interesting'to note (4) that for reasons that are beyond our 
command the probability distribution (5.3) of the random mapping 
model (4) is given by (5.3) in the strange case c = -1/2,  s =  0. 

Starting from (5.1)-(5.3), we can generate the tree hierarchically 
beginning from the root and going down to the leaves. 

The first question is what happens from the probabilistic point of view 
when we go to the continuum limit in which infinitely many levels are 
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present, but we keep the resolution e nonzero so that the total number of 
states is finite. The situation is rather clear from the mathematical point of 
view, as far as the total number of leaves is finite. 

To this end it is interesting to consider the case in which the levels are 
separated by an infinitesimal spacing 6. In other words, we have to study 
the case in which the level of subclusters s is very close to the one of the 
clusters, i.e., s = c + 6. We should find that (in the case of finite resolution) 
with a probability which is equal to 1 -  A6, there is only one subcluster; 
this is absolute necessary if the final tree contains a finite number of 
branches and consequently we want to define a transition probability 
which is proportional to the interval of x. 

The key factor in expression (5.3) is F ( k - c / s ) / F ( 1 - c / s ) ,  which is 
proportional to s - c  (i.e., 6) as soon k is greater than one. The branching 
probability in two or more states is given by the integral of (5.3) over the 
w's. If we assume that a cutoff is present and thus the integral over the w's 
is finite, the final result vanishes linearly with 6. This conclusion is con- 
firmed by the distribution of the single wr, which according to the previous 
formula is given (neglecting high-order terms in 6) by 

6 w r  -1  - ' (1  - w r )  - 1 + ~  = 6 ( w r  - 1) + 0(6)  (5.5) 

The reader should note carefully that Eq. (5.5) is correct only in the 
distribution sense. Moreover, if the cutoff is removed, the branching 
probability is no longer proportional to 6 because there is a divergence 
arising from the integral over the w's, which diverge in the limit e going to 
zero. 

The natural question to ask is whether all branching processes are 
bifurcations or whether elementary trifurcations (or higher-order branches) 
are also present. We can answer this question in the following way. If there 
are only bifurcations, the probability for having at least three different 
subclusters should be proportional to 6 2. One can readily see that this is 
not true: such a probability contains terms linear in 6. 

The same conclusions could be reached by considering the previous 
probability distributions. If bifurcations make the leading contribution, the 
probability distribution should be symmetric in the exchange wr  ~ 1 - wr.  

This is not true. An explicit computation for the probability distribution for 
finding two substates with weights w r l  and w r  2 shows that it is given by (at 
the leading order in 6) 

[b/F(1 -- c)] w r l  l - C w r 2 1  c(1 -- WrT) l+c. (5.6) 

and it is not concentrated at w r  r = 1, as would happen if only bifurcations 
were present. 
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We have thus shown that as soon as a branching happens bifurcations 
are not a privileged process. This can be intuitively understood by looking 
to the probability distribution in Eq. (5.1). 

Let us assume that there is one state which has free energy much 
smaller than the others (let us take i =  1 for simplicity); in this region the 
probability distribution simplifies to 

exp(/~f~) exp (/?s ~ f i )  (5.7) 
i = 2 ,  M 

We thus expect that f l  is of order -1//76, while the other f ' s  are of 
order - 1/~s. Therefore in most of the cases f~ will be much smaller than 
the others and no branching will be seen (apart from branches with 
exponentially small weights). On the other hand, whenf~ is comparable to 
the others f ' s  (which have a spacing among themselves which is of order 
1/~s) many states will give a nonnegligible contribution. 

It may be interesting to note that in the region where c is close to zero, 
bifurcations become the dominant process, as can be seen by the approx- 
imate symmetry of the function in Eq. (5.5) and by the fact that the spacing 
among the levels is of order 1/c. This result is confirmed by the appearance 
in Eq. (5.6) of a delta function of argument (1 - wrr) in the limit c going 
to zero. 

6. T H E  L O W - x  E X P A N S I O N  

The phenomenon which makes the whole approach rather complex is 
the divergence in the total number of states so that the tree contains an 
infinite number of branches. This is very similar to what happens in quan- 
tum electrodynamics, where the total number of emitted photons diverges 
at low energy. In order to reach a better understanding, it is convenient to 
study the system in the approximation where only bifurcations are present, 
as happens at low values of x. Before removing this approximation (as we 
shall see in the next section), it is convenient to study carefully the results 
obtained neglecting trifurcations. 

It is interesting to use this approach to perform some analytic 
computations in this situation. This may be considered as a preliminary 
step for doing more complex computations in the region where high-order 
processes like trifurcations cannot be neglected. 

We assume that the probability for having a bifurcation of a state into 
two, the initial state having weight/ ,  the two final states wl and (1 - w ) I ,  
respectively, is 

dBz(w) = dx [b2(w) + b2(1 - w)] (6.1) 
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The function b2 can be found directly by computing the probability for 
finding two states with weights wl and w2 inside a cluster of weight 1 at x. 
From (5.3) we have 

dP(wl, w2)= {dx/[r(1- x) r(x)]} wl~-Xw~'-x(1-Wl-W2) l+x 

dx w~lw216(1 - Wl - w2) (6.2) 

where we have neglected terms which vanish when x goes to 0. 
We thus find that 

b2(w) = 1/w (6.3) 

We can check the correctness of the result as follows. For  small x we 
should have that the probability of having a state with weight w is given 
by 

pl(W, X) = x[b2(w ) q- b2(1 - w)] (6.4) 

Previous equations tell us that 

pl(w, x) = [1/F(x) ] w - l - x ( 1  - wr) - l + x  (6.5) 

in perfect agreement with Eq. (6.3). 
Let us assume for the time being that Eq. (6.1) is correct for all x and 

let us use it to compute the corresponding function p~(w, x). It is easy to 
check that, if only bifurcations are present, the function pl(w, x) satisfies 
the following differential equation: 

apl(W , X)/C3X = - C p l ( w  , x) + dy/y p,(y, x) b(w/y) 

= -Cp~(w, x) + f~ dz/z p~(w/z, x) b(z) (6.6) 

where the constant C represents the total probability for having bifurca- 
tions and b (z )=  l / z ( 1 - z )  is a compact notation for bz(z)-k-b2(1-z). As 
far as C is infinite, it is convenient to write down Eq. (6.6) as 

~p,(w, x)/~x = -C'p~(w, x) 

+ fs dz/z [pl(w/z, x) b ( z ) -  pl(w, x)z/(1 - z)]  (6.7) 

the integral over z being finite. The constant C' may be computed requiring 
that the average of w is 1 (the sum of the w's is indeed 1): 

1 

fodW wpl(w, x) = 1 (6.8) 

It turns out that C ' - -0 .  
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Equations similar to (6.7) are very familiar in high-energy physics (~4) 
and they are conveniently studied using the Mellin transform. 

We define 

1 

/ ~ I ( S ,  X) ~-- fO dw WSpl(W, X) 

1 

~)(s)=-fo d z z ' [ b ( z ) -  1/(1 - z ) ]  (6.9) 

= - 7 ( s ) + 7 ( 1 ) =  - ~ 1/n 
n = l , s - -  I 

where the function 7 is the logarithmic derivative of the Euler F function. 
It easy to see (using the convolution theorem for the Mellin 

transform) that/~l(s, x) is simply given by 

/51 (s, x) = exp [x~)(s) ]/(s - 1 ) (6.10) 

The function Pl can be obtained by inverse Mellin transform. It is easy 
to check that pl(w, x) is proportional to ( 1 -  w) -x for w near to 1 (in 
agreement with the exact results), while it is less singular than w - 1 - '  for 
any positive e for w near to zero (in disagreement with the exact results). 

We have just seen that the approximation of neglecting trifurcations is 
enough to reproduce the leading singularity of the distribution functions 
close to w = 1, while it is not enough to control the behavior near w = 0, 
where trifurcations and high-order processes will play an important role. 

In a similar way we can include the contribution of trifurcations and 
high-order processes. Indeed, at the leading order in x the probability of 
finding n states at x + dx inside a cluster at level x is given by 

dxx('-l)F(n-l) I-I w~l--x(~(=~ 1 Wi--1) 
i =  1,n i ,n 

(6.11) 

One finally finds that an n-furcation process has a probability propor- 
tional to x" 1. It is therefore possible to develop a consistent expansion at 
low x neglecting n-furcation processes with large n. In particular it is 
possible to extend the computation which we have just done of the function 
pl(w, s) and to include the presence of trifurcations. 

Another interesting computation we can perform is the following. For  
each realization of the tree and level x we can define the quantity 

,2 (6.12) 

822/72/5-6-2 
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where the sum is done over all the dusters at level x, wc being the proba- 
bility of each cluster. The probability distribution of Y(x) [i.e., P(Y)]  has 
been investigated in detail. Some of the moments have been explicitly 
computed m~ (e.g., ( Y ) =  1 - x )  and closed formulas exist for all the 
moments. (1~ It has also shown by Derrida that the function P(Y) is 
singular at Y= 1In for any integer n, so that its properties are rather 
complex. 

We now compute the probability distribution P(Y) for small x using 
the approach of the previous section. As far as only one bifurcation may 
have happened for small x, if w is the weight of a state, 1 - w should be the 
weight of the other states. In this situation Y is given by w 2 + (1 - w) 2. 

We thus find that 

1 

( Y k ) = l - C ' x + X f o  dw(1/w){w2+(1--w)2]k--1} (6.13) 

where the constant C' is fixed by the condition that ( Y ) =  1 -  x and it 
turns out to be equal to 0. It is easy to verify that this result agrees up to 
k = 6 with that quoted in Mezard et al3 ~176 

7. ON U N I V E R S A L I T Y  

At first sight it seems useless to do numerical simulations of the tree 
(i.e., to produce explicit realizations of it) in the presence of the large 
number of quantities that we can compute analytically. However, it is 
certainly interesting to discover if pictures of the tree like the one presented 
in Fig. 1 are realistic or not. Moreover, there are many quantities that at 
the present time we are not able to compute analytically. 

Let me mention an example of an analytically hard computation 
which arises in the theory of directed polymers. We consider a function 
f(x) which diverges as x -~ when x goes to zero. For  each realization of the 
tree the function f evaluated on the tree is equal (by definition) to 

~, w~wTf(x~) (7.1) 
ct ,  

where the sum runs over the states and x~  is the level at which the two 
states c~ and 7 separate [in other words x~  = x(d~)] .  

The evaluation of the expeftation value o f f  averaged on all the trees 
is rather simple to compute and one gets 

( f )  = f~ dx f(x) (7.2) 
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In a similar way we get that 

(f2)= l/3 f~ dx f2(x)+ 2/g [f/ dx f(x)] 2 (7.3) 

At the present moment closed formulas for ( f ~ )  are not available for 
generic k. 

In the case in which 1 < 2 < 2 ,  the expectation value of ( f )  is 
divergent; however, a close analysis shows that for most of the trees f will 
be finite r and the divergence of ( f )  arises as an effect of the average over 
the trees. The question of the computation of the most likely value of f ,  or 
equivalently of the average of its logarithm ( ( l n f ) ) ,  is well posed and 
interesting, but it is not easy to answer analytically. 

In this paper we will not present any numerical simulation of the tree, 
but we will discuss the general setting in which it can be done. We will find 
that the tree that we have obtained in the continuum limit is universal, i.e., 
its statistical properties do not depend on the way it is generated. 

There is a relatively easy way to generate the tree (if the maximum 
value of x is not too large). One introduces a small step 6x, and for each 
6x one generates M free energies according to the distribution (5.1). This 
should not be too difficult and it can be done, for example, using a Monte 
Carlo technique with an appropriate starting condition on the f ' s  [e.g., 
M - 1  free energies are uncorrelated and the last one is generated at a 
distance of order 1/(6x) from the smallest of the first M -  1 free energies]. 

We introduce a cutoff and we remove all the branches with probability 
less than e. If M is sufficiently large (this condition may be crucial for x 
close to 1, but not for small x; for x near to zero we can take M =  2) and 
6x and ~ are small, we can obtain very accurate results. The computational 
time is polynomial in all the parameters: the number of branches which are 
relevant at each stage of the computation is certainly smaller than e-1, and 
it would be much smaller than e-1 in most of the cases. 

If we follow this prescription it seems that there are no problems. It is, 
however, interesting to see what happens if we use the other method (in 
which the free energies are used only as reference point) to generate the 
tree. We introduce a step 6x and for each step we introduce M branches. 
In this way we obtain a Cayley tree with coordination number M + 1 and 
diameter L = 1/6x. 

The states are on the surface of the Cayley tree and for each point of 
the surface (for each state) there is a unique path joining it to the origin 
(the root). On each node of the tree we extract a free energy f (the nor- 
realization of the free energy is slightly different from the previous one 
because we have absorbed a factor x in it), which is randomly distributed. 
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The f ' s  are uncorrelated random variables; the probability of finding one 
in the interval f - f  + df is given by 

dp(f) = exp( / )  df (7.4) 

for f smaller than a cutoff value. 
The states (labeled by ~) are at the surface of the Cayley tree and their 

weight is just proportional to 

w ~ = e x p ( - ~  fi/xi) (7.5) 
I L  

where xi = i 6x, and f~ is the free energy of the ith node which we have to 
cross from the origin of the tree to the state. 

Summarizing, we have a Cayley tree (i.e., the substratum) which has 
an exponentially large number of branches. After that a weight of the 
branches is introduced according to Eq. (7.5) and we cut off all the 
branches with weight less than e; we are left with a tree with a finite 
number of branches, which is the object of our study. 

The reader should note that we have two trees: 

(a) The substratum, which has infinitely many leaves and is fixed. 

(b) The final probabilistic tree, which may be well approximated by 
a tree with a finite number of leaves. 

In principle we have to stick to the form of p(f) given by (7.4) and 
send M to infinity and 6x to zero (L to infinity). In this way the number 
of points on the surface of the Cayley tree would be exponentially large, 
i.e., M c, and we do not have the shortcut of considering only a small sub- 
set, because we cannot judge from the free energies f near the root which 
would be the weight of the states on the surface. 

Although this method is not very efficient, it is rather interesting 
because, as we shall see now, the results in the limit where 6x goes to zero 
do not depend on the form o f p ( f )  and on the value of M. In other words, 
the final probability distribution for the tree in the continuum limit does 
not depend on the details of the substratum and it is therefore a universal 
property of a wide class of processes which lead to a tree in the continuum. 

The formulas we have just written for the weights describe a random 
directed polymer on a Cayley tree with a temperature (x) which depends 
on the distance from the origin. 

As a preliminary computation let us consider the case where we 
remove the dependence of the x's on i and we set x~ = m. We recover the 
usual random directed polymer on a Cayley tree at fixed temperature, 
which has been carefully studied by Derrida and Spohn. (2) They find by 
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explicit computations that the statistics of the weights in the limit L going 
to infinity is independent of L and is given by Eqs. (4.1)-(4.2) for an 
appropriate value of Xs, which depends on m, M, and p ( f ) .  

One point to which we should pay attention is that the states are no 
longer defined as the leaves of the tree, but all the leaves that are separated 
by a finite amount of branches (in the limit when L goes to infinity) belong 
to the same state. States are therefore obtained by putting together all 
leaves at a finite distance, in other words, for random directed polymers on 
a Cayley tree the thermodynamic limit of the distribution of the weights of 
the endpoint is independent of the shape of the tree, of the distribution 
of the randomness, and of the microscopic temperature (m). Everything 
combines in the parameter Xs. 

The same results may be obtained using the replica method and 
showing that the model is described by a order parameter matrix Q with 
one-step replica symmetry breaking. (3) 

In the same way we can extend these computations to the case where 
the temperature xi is weakly dependent on i. One would find the same 
results as before with an x which depends on ilL. The only difference would 
be that the resulting value of x would no longer be the microscopic one 
(i.e., i /L),  but a different one (x = Ai/L) ,  where the constant A depends on 
M and p ( f )  and can be computed using the formulas of Derrida and 
Spohn. ~2~ 

It is rather amusing that we can use the replica method to solve a 
statistical model of random directed polymers which is the generalization 
of the tree of states obtained from the replica method itself. 

We conclude by observing that the behavior of the probabilistic tree 
does not depend on the properties of the substratum and in this sense it is 
a universal properties of all models in which the continuum limit is 
obtained as a very large sequence of small steps. 
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